Gastroesophageal Reflux Disease

Ross Heil, D.O.
Goshen Health System
Department of Gastroenterology
• No financial disclosures
Definition

• GERD
 – Symptoms or complications resulting from the reflux of gastric contents into the esophagus or beyond (oral cavity, larynx, or lung) occurring at least once per week.
 – Classified on endoscopic appearance
 • Non-erosive disease (NERD)
 • Erosive disease (ERD)
Heartburn

Normal EGD 65%

NERD 40%
Hypersensitive esophagus 35%
Functional heartburn 25%

Barrett's esophagus 3–5%

No dysplasia 83%
Low-grade dysplasia 7%
High-grade dysplasia/EAC 10%

LA class A/B 81%
LA class C/D 19%

Erosive esophagitis 20–30%
Symptoms of GERD

• Typical symptoms
 – Heartburn
 – Regurgitation
 – Water Brash

• Other symptoms
 • Chest pain
 • Dysphagia
 • Chronic cough
 • Asthma
 • Chronic laryngitis
 • Dyspepsia
 • Nausea
 • Bloating
 • Belching
 • Globus
The Pyramid of Diseases Associated with GERD

- Erosive esophagitis
- Non erosive reflux disease
- Chest pain
- ENT
- Asthma
- Misc
Aging, Gender and GERD

• Aging
 – Intensity of symptoms may decrease after age 50
 – Aging increases prevalence of erosive esophagitis LA grades C and D
 – Barrett’s esophagus increases in prevalence after age 50

• Gender
 – Men
 • More likely to have ERD
 • More likely to have esophageal cancer
 • More likely to have Barrett’s
 – Women
 • More likely to have NERD
Quality of Life, BMI and GERD

• Quality of Life
 – Nocturnal GERD has greater impact on QOL than daytime symptoms

• Body Mass Index
 – Higher degrees of ERD increases as BMI rose
 – Association between BMI and carcinoma of the esophagus and gastric cardia
Establishing the Diagnosis of GERD

• Presumptive diagnosis of GERD
 – Can be made in setting of typical symptoms
 – Empiric medical therapy with a PPI for 8 weeks
 • Counsel on take 30 minutes before breakfast
 • However PPI response does not reliably predict GERD
 – Several studies show that non GERD patients have a positive PPI response

• Upper endoscopy is not required in presence of typical GERD symptoms unless
 – Alarm symptoms
 – Greater than 50 years old

• Esophageal manometry is recommended for preoperative evaluation
 – but has no role in diagnosis of GERD
Establishing the Diagnosis of GERD

• Not recommended for diagnosis of GERD
 – Routine biopsies from the distal esophagus are not recommended specifically to diagnose GERD
 – Repeat endoscopy is not indicated in patients without Barrett's in the absence of new symptoms
 – Barium studies are not utilized for the diagnosis of GERD
 – H. pylori screening is not recommended
Establishing the Diagnosis of GERD

- Surrogate makers of GERD on endoscopy
 - Erosive esophagitis
 - Seen in 1/3 of patients with GERD
 - Repeat endoscopy after 8 weeks of therapy in severe erosive reflux disease to exclude underlying Barrett's
 - Barrett's
 - Seen in 5-15% of patients with GERD
 - Peptic stricture
 - Rare given PPI therapy
 - If tight, can cause false negative pH study
 - True peptic strictures generally occur at the squamocolumnar junction
 - If else where think of another etiology
The Los Angeles Classification System for Esophagitis

Los Angeles Grade A
One or more mucosal breaks no longer than 5 mm, not bridging the tops of mucosal folds

Los Angeles Grade B
One or more mucosal breaks longer than 5 mm, not bridging the tops of mucosal folds

Los Angeles Grade C
One or more mucosal breaks bridging the tops of mucosal folds involving <75% of the circumference

Los Angeles Grade D
One or more mucosal breaks bridging the tops of mucosal folds involving >75% of the circumference

Barrett's Esophagus

• Greatest risk factor for development Barrett’s
 – abnormal waist to hip ratio (>0.9)
• Most common reason for death is cardiovascular
• Regression of Barrett’s occurs more in short segment (1-3 cm) than long segment
 – Occurs both in PPI and surgical therapy
 – Surgical therapy may perform better than medical in regression
• Nissen does not lower risk of esophagical adenocarcinoma despite regression
 – Barrett’s Esophagus should not be the indication for Nissen
Establishing Diagnosis of GERD

- Ambulatory esophageal reflux monitory is indicated
 - Before considering surgical therapy in patients with NERD
 - Evaluation of patients refractory to PPI therapy
 - NERD with inability to decrease to on demand PPI
 - Situation when the diagnosis of GERD is in question
 - Not necessary when Barrett’s or erosive esophagitis present to establish diagnosis of GERD
Chest pain & GERD

• Non-cardiac chest pain suspected due to GERD should have diagnostic evaluation
 – Presence of heartburn & chest pain
 • not predicative of PPI response of the chest pain component.
 – Cardiac cause should be excluded before commencement of a GI evaluation
 – Diagnostic evaluation
 • Endoscopy
 • If no objective signs of GERD on endoscopy then pH monitoring before PPI trial.
Management of GERD

• Weight loss
 – overweight
 – normal BMI with recent weight gain
• Head of bed elevation
 – 6-8 inches
• Avoidance of meals 2-3 hours before bed
• Global elimination of food that can trigger reflux is not recommended due to lack of data
 – Chocolate
 – Caffeine
 – Alcohol
 – Acidic or spicy foods
 – Tobacco
Management of GERD

• PPI Therapy
 – 8 week course of PPI is recommended for
 • symptom relief
 • Healing of erosive esophagitis
 – LA Grade B-C esophagitis
 » nearly 100% will relapse within 6 months if off therapy
 – NERD can be managed with on demand PPI therapy/H2 blocker
 » If they can’t then consider pH study to differentiate GERD from functional disorder
 – PPI should be taken 30-60 minutes before meal
 • Exception is omeprazole-sodium bicarbonate and dexlansoprazole
 – If partial response to PPI therap
 • increasing dose to twice daily therapy or switching to a different PPI may provide relief
 – PPIs are safe in pregnant patient
 – Omeprazole sodium bicarbonate has more effective control of nocturnal gastric PH in 1st 4 hours of sleep
Management of GERD

- H2 blockers use
 - can be used as maintenance option in those without erosive disease if relief
 - Bedtime H2 blocker can be used in addition to twice daily PPI in patients with night time reflux
 - May be associated with tachyphlaxis after 1 month of therapy
Management of GERD

• Miscellaneous Therapy
 – Prokinetic therapy or baclofen should not be used in GERD without diagnostic evaluation
 • Baclofen decreases number of post-prandial acid, non-acid reflux events, nocturnal reflux activity, and belching episodes
 – Dosage 5-10 mg TID
 – No role for sucralfate in non-pregnant GERD
Risks Associated with PPI

• Switching PPIs can be considered in the setting of side effects
 – Include headache, diarrhea, and dyspepsia <2% of users
 – Vitamin B12 deficiency in the elderly that are long term users
 • No data to support concern in other population
 – Iron deficiencies
 • No data demonstrating development of iron deficiency anemia in normal subjects on PPI therapy

• Short term PPI usage increases risk of community acquired pneumonia
 – Not elevated in long term users
 – H2 blockers associated with elevated risk of hospital acquired pneumonia

• PPI therapy does not need to be altered in concomitant clopidogrel users
Risks Associated with PPI

• Known osteoporosis can remain on PPI therapy.
 – Concern for hip fractures and osteoporosis should not affect decision to use long term PPI therapy
 – Excess hip fracture risk among PPI users was only present in persons with at least one other risk factor
 – Long term PPI users should not routinely raise their intake of calcium
 – No need to screen or monitor bone mineral density based of PPI use

• PPI therapy can be a risk factor for Clostridium difficile
<table>
<thead>
<tr>
<th>Potential adverse effect</th>
<th>Types of studies</th>
<th>Threats to validity</th>
<th>Overall quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney disease</td>
<td>Observational only</td>
<td>Modest effect size; Residual confounding would bias towards harm; Absence of dose-response effect</td>
<td>Very low</td>
</tr>
<tr>
<td>Dementia</td>
<td>Observational only</td>
<td>Modest effect size; Residual confounding would bias towards harm</td>
<td>Very low</td>
</tr>
<tr>
<td>Bone fracture</td>
<td>Observational only</td>
<td>Inconsistent results; Modest effect size; Residual confounding would bias towards harm</td>
<td>Low or very low</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>Observational • RCT</td>
<td>Results differ between RCTs and observational studies; Secondary analysis of RCT data; Modest effect size; Residual confounding would bias towards harm</td>
<td>Very low</td>
</tr>
<tr>
<td>Small intestinal bacterial overgrowth</td>
<td>Observational • Crossover</td>
<td>Sparse data; Residual confounding would bias towards harm; Protopathic bias</td>
<td>Low</td>
</tr>
<tr>
<td>Spontaneous bacterial peritonitis</td>
<td>Observational only</td>
<td>Modest effect size; Residual confounding would bias towards harm</td>
<td>Very low</td>
</tr>
<tr>
<td>Clostridium difficile infection</td>
<td>Observational only</td>
<td>Modest effect size; Residual confounding would bias towards harm</td>
<td>Low</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Observational • RCT</td>
<td>Results differ between RCTs and observational studies; Secondary analysis of RCT data; Modest effect size; Absence of dose-response effect; Residual confounding would bias towards harm; Protopathic bias</td>
<td>Very low</td>
</tr>
<tr>
<td>Micronutrient deficiencies</td>
<td>Observational only</td>
<td>Inconsistent results; Modest effect size; Absence of dose-response effect; Residual confounding would bias towards harm</td>
<td>Low or very low</td>
</tr>
<tr>
<td>Gastrointestinal malignancies</td>
<td>Observational • RCT</td>
<td>Results differ between RCTs and observational studies; RCTs use surrogate outcomes; Modest effect size; Residual confounding would bias towards harm; Confounding by indication and protopathic bias</td>
<td>Very low</td>
</tr>
</tbody>
</table>
Poor Control of GERD

• Risk factors for lack of symptoms control include:
 – Longer duration of disease
 – Presence of hiatal hernia
 – Extraesophageal symptoms
 – Lack of compliance
 – Increased BMI (>25 kg/m²)
Surgical Options for GERD

• Reasons to refer for surgery
 – Desire to discontinue medical therapy
 – Non compliance
 – Side effects associated with medical therapy
 – Presence of a large hiatal hernia
 – Esophagitis refractory to medical therapy
 – Persistent symptoms documented to be caused by refractory GERD
Surgical Options for GERD

• Surgical therapy is a treatment option for long-term therapy in GERD patients
 – Generally not recommended in patients who do not respond to PPI therapy
 – Pre-operative pH monitory is mandatory in patients without evidence of erosive esophagitis.
 – Pre-operative manometry is required
 – Surgical therapy is as effective as medical therapy for carefully selected patients
 – Obese patients with GERD should consider Roux-en-y
Surgical Options for GERD

• Outcomes in patients with extra-esophageal symptoms undergoing Nissen have been less encouraging
 – A response to PPI is critical
 – In the absence of PPI response, surgery is unlikely to be effective even with an abnormal pH study.
Surgical Options for GERD

- 10 year follow up of a randomized controlled trial comparing medical to surgical therapy
 - 92% of patients in medical arm were using medical therapy
 - 62% of patients in surgical arm were using medical therapy
- 12 year follow up of patients randomized to fundoplication compared with omeprazole
 - 53% of surgery cohort were in remission
 - Although more had gas-bloat symptoms in 15-20% patients
 - 45% of medically treated patients were in remission
- A community study demonstrated that 30% of Nissen patients will resume medical therapy in 5 years.
Surgical Options for GERD

- LINX Reflux system
 - Not for patients with large hiatal hernia or abnormal peristalsis
 - Made of titanium beads with magnetic link
 - Approved by the FDA
 - Performance of Linx resulted in consistent symptom relief and pH control with markedly fewer side effects than traditional laparoscopic fundoplication
Endoscopic Therapy for GERD

• The use of endoscopic therapy or transoral incisionless fundoplication (TIF) cannot be recommended as an alternative to medical or traditional surgical therapy.
Extra-esophageal GERD

The Pyramid of Diseases Associated with GERD

- Erosive esophagitis
- Nonerosive reflux disease
- Chest pain
- ENT
- Asthma
- Misc.

True prevalence of GERD

0%

100%
Extra-esophageal GERD

• Careful evaluation for non-GERD causes should be undertaken in all of these patients
• GERD can be considered as a potential co-factor in
 – Asthma
 – Chronic cough
 – Laryngitis
 • A diagnosis of reflux laryngitis should not be made based solely upon laryngoscopic findings
 – 80% of healthy controls had one or more signs of laryngeal irritation
 – High intra-observer variability describing edema, erythema and severity
 » Non-GERD etiologies allergy, smoking, or voice abuse
• A PPI trial is recommended to treat extra-esophageal symptoms in those with typical symptoms of GERD twice daily for 3 months
 – Reflux monitoring should be considered before a PPI trial in patient with extra-esophageal symptoms who have atypical symptoms of GERD
Extra-esophageal GERD

- EGD is not recommended as a means to establish a diagnosis of GERD related asthma, chronic cough, or laryngitis
- Extra-esophageal symptoms that were refractory to PPI therapy
 - Presence of heartburn or abnormal acid exposure on pH monitoring predicted response to escalation of therapy
 - SI, SAP, or impedance variable did not predict PPI response
- Currently available diagnostic tools to establish GERD as causes of extra-esophageal symptom have serious limitations
GERD Refractory to Treatment

• 1st step in management of refractory GERD is optimization of PPI therapy
 – Confirming compliance
 • Associated with a lack of response
 • Adherence to PPI therapy was found in on 60%
 – Ensuring appropriate dosing
GERD Refractory to Treatment

• Upper endoscopy
 – should be performed in refractory patients with typical or dyspeptic symptoms to exclude non-GERD etiologies such as excluding EoE.

• pH monitoring
 – If diagnosis of GERD is in question (i.e. not responding to PPI therapy and no objective signs on endoscopy) then perform pH monitoring off PPI therapy
 – Make sure biopsies were taken to rule out eosinophillic esophagitis
 – Functional heartburn
 » Typical GERD symptoms but no correlation with reflux on pH study
 – Hypersensitive esophagus
 » Typical GERD symptoms with correlation of reflux but less than 5% of the total time
 – If diagnosis of GERD established and still with refractory symptoms consider pH-impedance monitoring on PPI therapy
 – Only 10% will be ongoing acid reflux on PPI twice daily

• Manometry
 – Also consider manometry for achalasia or esophageal spasm if above are all negative
GERD Refractory to Treatment

- Acid exposure
- Erosive esophagitis
- NERD
- Reflux hypersensitivity
- Functional heartburn

Esophageal hypersensitivity
GERD Refractory to Treatment

• Functional heartburn
 – Defined as burning retrosternal discomfort or pain without evidence of GERD for at least 3 of the last 6 months
 – stepwise evaluation supports the absence of GERD, EoE, and a major esophageal motor disorder.
 – No correlation of symptoms with objective pH testing
 – More commonly affects women after age 40
 – High rates of anxiety with fewer social support structures
 – 2/3 of these patients will have other GI symptoms such as belching, bloating, and postprandial fullness
 • On average report >6 upper GI symptoms

• Esophageal hypersensitivity
 – Normal esophageal acid exposures but positive correlation between reflux events and symptoms

• Treatment
 – TCA and SSRIs
 – Melatonin 6 mg for 3 months
 – Psychological therapies, ie cognitive behavioral therapy.
GERD Refractory to Treatment

- Other causes of heartburn not responding to acid suppression should be considered:

Table 1. Differential diagnosis for heartburn not responding to acid suppression

<table>
<thead>
<tr>
<th>Condition</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing acid reflux due to insufficient acid suppression</td>
<td>Peptic ulcer disease</td>
</tr>
<tr>
<td>Esophageal hypersensitivity</td>
<td>Esophageal motility disorders</td>
</tr>
<tr>
<td>FH</td>
<td>Esophagitis of any etiology</td>
</tr>
<tr>
<td>Non-acidic or weakly acidic reflux</td>
<td>Esophageal cancer</td>
</tr>
<tr>
<td>Eosinophilic esophagitis</td>
<td>Cardiac etiologies</td>
</tr>
<tr>
<td>Gastroparesis</td>
<td>Biliary pathology</td>
</tr>
<tr>
<td></td>
<td>Pulmonary pathology</td>
</tr>
</tbody>
</table>

FH, functional heartburn.
References

• Patti MG. 2016. An Evidence-Based Approach to the Treatment of Gastroesophageal Reflux Disease. JAMA Surgery, 151 (1), 73-78.

Thank you for your attention